Part Number Hot Search : 
TB30N0 CM9100 ELM611DA 002XX P010239 CMMT591A 0PFTN SLA7032M
Product Description
Full Text Search
 

To Download IRFI4410ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  4/19/11 
www.irf.com 1 hexfet   power mosfet IRFI4410ZPBF s d g gds gate drain source d s d g to-220ab full-pak benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits v dss 100v r ds(on) typ. 7.9m  max. 9.3m  i d 43a absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) single pulse avalanche energy  mj t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case  ??? 3.2 c/w r ja junction-to-ambient  ??? 65 -55 to + 175 0.3 10lb  in (1.1n  m) 300 30 310 47 max. 43 30 170

 2 www.irf.com s d g    repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.91mh r g = 25 , i as = 26a, v gs =10v. part not recommended for use above this value.  pulse width 400 s; duty cycle 2%.   
    
 
c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v ( br ) dss d ra in -to-sour ce brea kdo wn vol tage 1 00 ?? ? ?? ? v v ( br ) dss /t j br ea kd ow n voltage temp. c oefficien t ? ?? 95 ?? ? mv/c r ds ( on ) static drain-to-source on-resistance ??? 7.9 9.3 m v gs ( th ) gate threshold voltage 2.0 ??? 4.0 v i dss d ra in -to-sour ce l eakage c ur rent ? ?? ?? ? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na ga te- to- source reve rse leakage ? ?? ?? ? - 100 r g ( int ) internal gate resistance ??? 0.9 ??? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs f or ward tran scond ucta nce 80 ?? ? ?? ? s q g total gate charge ??? 81 110 nc q g s gate-to-source charge ??? 18 ??? q g d gate-to-drain ("miller") charge ??? 23 ??? t d ( on ) turn-on delay time ??? 15 ??? ns t r rise time ??? 27 ??? t d ( of f ) turn-off delay time ??? 43 ??? t f fall time ??? 30 ??? c is s input capacitance ??? 4910 ??? pf c oss output capacitance ??? 330 ??? c rs s reverse transfer capacitance ??? 15 0 ??? c oss eff. (er) effective output capacitance (ener g y related) ??? 420 ??? c oss eff. (tr) effective output capacitance (time related) ??? 680 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 43 a (body diode) i sm pulsed source current ??? ??? 170 a (body diode)  v sd d iode forw ar d voltage ? ?? ?? ? 1.3 v t rr reverse recovery time ??? 47 71 ns t j = 25c v r = 85v, ??? 54 81 t j = 125c i f = 26a q rr reverse recovery charge ??? 110 160 nc t j = 25c di/dt = 100a/ s  ??? 140 210 t j = 125c i rrm reverse recovery current ??? 2.5 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 10v  v gs = 0v v ds = 50v conditions v ds = 50v, i d = 26a i d = 26a v gs = 10v  v dd = 65v i d = 26a r g = 2.7 v ds = v gs , i d = 150 a v ds = 100v, v gs = 0v v ds = 100v, v gs = 0v, t j = 125c v ds = 50v v gs = 20v v gs = -20v conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma  v gs = 10v, i d = 26a  p-n junction diode. t j = 25c, i s = 26a, v gs = 0v  ? = 1.0mhz v gs = 0v, v ds = 0v to 80v  , see fig.11 v gs = 0v, v ds = 0v to 80v  conditions mosfet symbol show in g the integral reverse

 www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 60 s pulse width tj = 175c 4.5v 2 3 4 5 6 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 50v 60 s pulse width 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20406080100120 q g total gate charge (nc) 0 4 8 12 16 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v v ds = 20v i d = 26a -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 26a v gs = 10v

 4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.0 0.5 1.0 1.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t c , casetemperature (c) 0 10 20 30 40 50 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 100 105 110 115 120 125 130 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5ma 0 20 40 60 80 100 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 200 400 600 800 1000 1200 1400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 8.6a 14a bottom 26a 0.1 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc

 www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 22a, 22b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 80 160 240 320 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 26a ri (c/w) ? (sec) 0.117574 0.000176 1.337531 0.7389 1.260992 0.103059 0.508931 0.008379 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / i / ri c 4 4 r 4 r 4

 6 www.irf.com       fig 16. threshold voltage vs. temperature    !   
        !   -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250 a i d = 150 a 100 200 300 400 500 600 700 di f /dt (a/ s) 0 2 4 6 8 10 12 14 16 i r r ( a ) i f = 26a v r = 85v t j = 25c t j = 125c 100 200 300 400 500 600 700 di f /dt (a/ s) 0 2 4 6 8 10 12 14 16 i r r ( a ) i f = 17a v r = 85v t j = 25c t j = 125c 100 200 300 400 500 600 700 di f /dt (a/ s) 0 50 100 150 200 250 300 350 q r r ( a ) i f = 17a v r = 85v t j = 25c t j = 125c 100 200 300 400 500 600 700 di f /dt (a/ s) 0 50 100 150 200 250 300 350 q r r ( a ) i f = 26a v r = 85v t j = 25c t j = 125c

 www.irf.com 7 fig 23a. switching time test circuit fig 23b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1 s duty factor < 0.1% v dd v ds l d d.u.t + - fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21. "   for n-channel hexfet   power mosfets  
     ? 
     ?     ?

        p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period #   
 # + - + + + - - -       ?      !  ?   " #$## ?        %  && ? #$##'$

   1k vcc dut 0 l

 8 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 04/11 to-220ab full-pak packages are not recommended for surface mount application. 
        
  
    
     logo in the assembly line "k" as s embled on ww 24, 2001 example: lot code 3432 t his is an irf i840g with assembly part number irf i840g international rectifier 124k note: "p" in as s embly line pos ition i ndi cates "l ead- f r ee" line k week 24 year 1 = 2001 dat e code lot code assembly 34 32  
          
    


▲Up To Search▲   

 
Price & Availability of IRFI4410ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X